TimeGEN-1 is TimeGPT optimized for Azure, Microsoft’s cloud computing
service. You can easily access TimeGEN via nixtlar
. To do
this, just follow these steps:
Models
in the sidebar and select
TimeGEN
in the model catalog.Deploy
. This will create an Endpoint.nixtlar
In your favorite R IDE, install nixtlar
from CRAN or
GitHub.
To do this, use the nixtla_client_setup
function.
Now you can start making forecasts! We will use the electricity
dataset that is included in nixtlar
. This dataset contains
the prices of different electricity markets.
df <- nixtlar::electricity
nixtla_client_fcst <- nixtla_client_forecast(df, h = 8, level = c(80,95))
#> Frequency chosen: h
head(nixtla_client_fcst)
#> unique_id ds TimeGPT TimeGPT-lo-95 TimeGPT-lo-80
#> 1 BE 2016-12-31 00:00:00 45.19122 30.49719 35.50965
#> 2 BE 2016-12-31 01:00:00 43.24537 28.96447 35.37618
#> 3 BE 2016-12-31 02:00:00 41.95892 27.06669 35.34091
#> 4 BE 2016-12-31 03:00:00 39.79675 27.96763 32.32674
#> 5 BE 2016-12-31 04:00:00 39.20512 24.66191 31.00021
#> 6 BE 2016-12-31 05:00:00 40.10902 23.05225 32.43594
#> TimeGPT-hi-80 TimeGPT-hi-95
#> 1 54.87278 59.88525
#> 2 51.11456 57.52628
#> 3 48.57694 56.85116
#> 4 47.26675 51.62587
#> 5 47.41004 53.74834
#> 6 47.78209 57.16578
We can plot the forecasts with the nixtla_client_plot
function.
To learn more about data requirements and TimeGPT’s capabilities, please read the nixtlar vignettes.
nixtlar
.Deploying TimeGEN via nixtlar
on Azure allows you to
implement robust and scalable forecasting solutions. This not only
simplifies the integration of advanced analytics into your workflows but
also ensures that you have the power of Azure’s cutting-edge technology
at your disposal through a pay-as-you-go service. To learn more, read here.